Benchmarking eleven biodiversity indicators based on environmental DNA surveys: More diverse functional traits and evolutionary lineages inside marine reserves

Alicia Dalongeville ${ }^{1} \odot \mid$ Emilie Boulanger $^{2} \odot \mid$ Virginie Marques ${ }^{3} \odot \mid$ Eric Charbonnel ${ }^{4} \odot \mid$ Virginie Hartmann ${ }^{5}$ | Marie Catherine Santoni ${ }^{6}$ | Julie Deter ${ }^{1,7}$ | Alice Valentini ${ }^{8}$ © | Philippe Lenfant ${ }^{9}$ | Pierre Boissery ${ }^{10} \odot$ | Tony Dejean ${ }^{8} \odot$ | Laure Velez ${ }^{1}$ | Franck Pichot ${ }^{1}$ | Loic Sanchez ${ }^{1,11} \odot \mid$ Veronique Arnal ${ }^{3} \odot$ | Thomas Bockel 7 | Gwenaelle Delaruelle 7 | Florian Holon ${ }^{7}$ © | Tristan Milhau ${ }^{8}$ © | Lola Romant ${ }^{1}$ | Stéphanie Manel ${ }^{3} \odot \mid$ David Mouillot ${ }^{1,12} \odot$

${ }^{1}$ MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France; ${ }^{2}$ AixMarseille Université, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, Marseille, France; ${ }^{3}$ CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France; ${ }^{4}$ Parc Marin de la Côte Bleue, Carry-le-Rouet, France; ${ }^{5}$ Reserve Naturelle Marine de Cerbère-Banyuls, Banyuls-surmer, France; ${ }^{6}$ Office de l'Environnement de la Corse, Corte, France; ${ }^{7}$ Andromède Océanologie, Mauguio, France; ${ }^{8}$ SPYGEN, Le Bourget-du-Lac, France; ${ }^{9}$ Université Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, Perpignan, France; ${ }^{10}$ Agence de l'Eau Rhône-Méditerranée-Corse, Délégation de Marseille, Marseille Cedex 01, France;
${ }^{11}$ CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France and ${ }^{12}$ Institut
Universitaire de France, Paris, France

Correspondence

Alicia Dalongeville
Email: alicia.dalongeville@gmail.com

Funding information

ANR LabCom DiagADNe, Grant/Award Number: ANR-20-LCV1-0008; Office de I'Environnement de la Corse; Agence de I'Eau RMC; Region Occitanie

Handling Editor: Rucha Karkarey

Abstract

1. To mitigate the ongoing threats to coastal ecosystems, and the biodiversity erosion they are causing, marine-protected areas (MPAs) have emerged as powerful and widespread conservation tools. Strictly no-take MPAs, also called marine reserves, undeniably promote fish biomass and density, but it remains unclear how biodiversity responds to protection. Identifying which facets of biodiversity respond to protection is critical for the management of MPAs and the development of relevant conservation strategies towards the achievement of biodiversity targets. 2. We collected 99 environmental DNA (eDNA) samples inside and outside nine marine reserves in the Mediterranean Sea to assess the effect of protection on 11 biodiversity indicators based on fish traits, phylogeny and vulnerability to fishing. We controlled for the effect of environmental heterogeneity (habitat, bathymetry, productivity, temperature and accessibility) using a principal component analysis, and for spatial autocorrelation due to potential unmeasured factors. 3. We found a positive and significant effect of protection on only 3 out of 11 indicators: functional and phylogenic diversity but also the ratio between demersopelagic and benthic species richness. Rather, total fish richness responded significantly and negatively to protection. We did not detect any significant effect of protection on threatened and elasmobranch species richness, probably due to their large home range compared to the size of Mediterranean marine reserves.

[^0]4. Synthesis and applications: Our findings highlight the importance of looking beyond the mere number of species to fully depict and understand the effect of marine reserves on biodiversity and evaluate the effectiveness of conservation measures. Rather, we propose a dashboard of three eDNA-based indicators that can provide an early signal of ecosystem deterioration or recovery. eDNA metabarcoding offers a powerful tool to supply site-specific and standardized taxonomic-, phylogenetic- and trait-based biodiversity assessments, in complement to other classical techniques, such as visual censuses or video surveys, able to estimate species abundance but also individual life-stage and size.

KEYWORDS

bioindicator, crypto-benthic fish, elasmobranch, environmental DNA metabarcoding, marine protected areas, Mediterranean Sea, monitoring

1 | INTRODUCTION

Marine biodiversity is under major threats worldwide due to increasing habitat degradation, overexploitation of resources, biological invasions and climate change (e.g. Yan et al., 2021). Marine-protected areas (MPAs) are the main conservation tools to curb the multiple threats on species and ecosystems, particularly no-take MPAs prohibiting fishing activities, also called marine reserves (Costello \& Ballantine, 2015) or fully protected areas (Grorud-Colvert et al., 2021).

Generally, marine reserves host larger and more abundant fish than nearby fished areas (Grorud-Colvert et al., 2021; Marcos et al., 2021), and promote the demographic recovery of endangered or overexploited species (Giakoumi et al., 2017; Waterhouse et al., 2020). Comparatively, few studies have investigated or reported whether biodiversity-and which of its componentsresponds positively to protection. Sanabria-Fernandez et al. (2019) show that MPAs are more effective in protecting fish biomass than diversity, especially for threatened species, while Villamor and Becerro (2012) reveal a higher functional diversity of fishes and invertebrates inside than outside MPAs. Species that are particularly sensitive to human pressures-such as fisheries targets, apex predators and large piscivores, but also threatened species and those exhibiting slow life histories with long life spans, late sexual maturity and low fecundity rates (e.g. sharks and rays)-are expected to respond positively to protection (Cinner et al., 2018; Claudet et al., 2010). However, highly mobile taxa, such as sharks and pelagic fishes, are less likely to respond to protection since reserve areas are much smaller than their home range (Dwyer et al., 2020; Juhel et al., 2018). Besides, several studies have shown marginal or no difference in species richness between MPAs and nearby unprotected areas (Giakoumi et al., 2017; Loiseau et al., 2021; Soykan \& Lewison, 2015), and a recent study even suggests that a higher species richness can be detected outside than inside MPAs (Boulanger et al., 2021). This rather counter-intuitive pattern might be explained by a higher species turnover in frequently disturbed areas (Dornelas
et al., 2019) or by trophic cascades limiting the diversity of lowtrophic species (crypto-benthic fishes) under higher predation pressure inside marine reserves (Boulanger et al., 2021).

This lack of consensus about protection effect on biodiversity is partly due to the inherent difficulty to exhaustively detect species in a vast water volume with diverse, and sometimes hidden, habitats (e.g. holes in shallow rocky reefs) and the cryptic or elusive behaviour of some fishes (Boussarie et al., 2018; Brandl et al., 2018). Environmental DNA (eDNA) metabarcoding has proven to offer more accurate and wider biodiversity assessments than classical census methods, particularly for reef fishes (Aglieri et al., 2021; Polanco Fernández et al., 2021; Sigsgaard et al., 2020), and to provide a very local signal (Gold et al., 2021; Jensen et al., 2022; Miya, 2022). This non-invasive method is based on retrieving DNA naturally released by organisms in their environment, then amplifying and sequencing a specific marker to identify corresponding species (Miya, 2022). eDNA metabarcoding then provides a list of molecular operational taxonomic units, whose sequences can then be assigned to species or taxa thanks to a genetic reference database (e.g. Marques et al., 2021), to ultimately produce a taxonomic composition for each sampled site. Yet, beyond the mere taxonomic richness, many other biodiversity indicators or metrics can be relevant to monitor ecosystems under degradation or restoration (D'agata et al., 2014; Smit et al., 2021; Soykan \& Lewison, 2015), but remain to be tested using eDNA surveys.

The Mediterranean sea is a hotspot for both biodiversity and human impacts (Micheli et al., 2013), so offers an appropriate context to test the effect of MPA on fish biodiversity. Although 6\% of its surface is covered by MPAs, only 0.06% is fully protected by marine reserves (Claudet et al., 2020). In this study, we took advantage of 99 eDNA samples within and outside nine Mediterranean marine reserves, partly published in Boulanger et al. (2021), and a well-completed genetic reference database (75% coverage of the regional fish species pool), to test 11 biodiversity indicators based on fish traits, phylogeny and vulnerability, while controlling for habitat and environmental heterogeneity.

2 | MATERIALS AND METHODS

2.1 | Study area and sampling

Our study focused on the strict no-take zone of nine no-take marine reserves located in the north-western Mediterranean Sea (Figure 1). These reserves were established at least 6 years before sampling and cover an area between 0.65 and $10.7 \mathrm{~km}^{2}$ (see Table S2 in Supporting Information).

Sampling was conducted in June and July 2018, 2019 and 2020 (Table S2). For each marine reserve, we sampled two or three sites: one inside the reserve (i.e. within the strict boundaries of the notake or fully protected area) and one or two in fished areas from 5 to 10 km away from the reserve boundaries (Figure 1 and Table S2). Some samples outside marine reserves were taken is a partially protected area with very little restrictions on fishing. Such weakly protected areas have been shown to provide little if no ecological benefit (Grorud-Colvert et al., 2021; Turnbull et al., 2021), in particular for Mediterranean fish (Giakoumi et al., 2017; Zupan et al., 2018). We thus considered all areas outside marine reserves as fished.

We sampled four replicates within each site in shallow waters ($5-15 \mathrm{~m}$) with standardized conditions in terms of habitat, depth and distance from the coastline. Each sample consists of 30 L of seawater filtered in 30 min along a 2-km transect from a boat navigating parallel to the coastline. When the reserve was smaller than 2 km wide the boat did shorter back-and-forth transects to strictly filter inside the boundaries. We collected seawater 1 m below the sea surface using a sterile tube and a peristaltic pump and filtered through a VigiDNA $0.2 \mu \mathrm{M}$ cross-flow filtration capsule. Immediately after filtration, the capsule was emptied from the remaining water and filled with 80 ml of CL1 Conservation buffer and stored at room temperature until extraction.

2.2 | eDNA extraction, sequencing and analyses

eDNA extraction was performed in a dedicated room for water DNA sample extraction, equipped with positive air pressure, UV
treatment and frequent air renewal, with decontamination procedures conducted before and after each extraction (Polanco Fernández et al., 2021).

We carried out PCR amplification using the primer pair teleo, targeting a 64 bp fragment of the mitochondrial DNA 12 S rRNA gene, specific to teleost fishes and elasmobranchs (Valentini et al., 2016). This teleo marker was shown efficient to detect fishes owing to its high interspecific variability and its short size so low degradation rate (Collins et al., 2019; Zhang et al., 2020).

The PCR mixture was denatured at $95^{\circ} \mathrm{C}$ for 10 min , followed by 50 cycles of 30 s at $95^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $55^{\circ} \mathrm{C}$ and 1 min at $72^{\circ} \mathrm{C}$, and a final elongation step at $72^{\circ} \mathrm{C}$ for 7 min . We ran 12 replicate PCRs per sample, and prepared nine libraries using the MetaFast protocol. We used the MiSeq Flow Cell Kit Version3 to perform paired-end sequencing ($2 \times 125 \mathrm{bp}$).

Paired-end sequencing outputs were handled using the Obitools toolkit (Boyer et al., 2016). First, reads were merged using illuminapairedend, trimmed and demultiplexed using ngsfilter, dereplicated using obiuniq, and reads identified as errors were discarded using obiclean with default settings. We discarded observations with less than 10 reads and accounted for tag-jumps and index-bleeding (Marques et al., 2021). Taxonomic assignments were performed using ecotag on a combination of publicly available sequences from ENA (downloaded in June 2021) and of our Mediterranean database, comprising 386 sequences from 156 species. See Appendix S1. in Supporting Information for more details.

2.3 | Reserve effect on fish biodiversity indicators

For each eDNA sample, we calculated 11 biodiversity indicators only based on species occurrences (i.e. non-quantitative) since eDNA metabacording does not provide reliable estimates of fish abundance in our Mediterranean system (Sanchez et al., 2022). The description, calculation and hypothesis behind each indicator are detailed in Table 1. For all analyses, the indicators based on species number
TABLE 1 Description and rationale for the 11 biodiversity indicators calculated inside and outside of the nine reserves. Mean value (\pm standard deviation) across all 99 samples are given for each indicator. Species traits and information used to calculate the indicators were extracted from the FishMed database (Albouy et al., 2015) and FishBase (Froese \& Pauly, 2010)

Indicator	Data source	Calculation	R package version	Expected protection effect	Hypotheses	Mean (\pm SD)	Range	Reference
Species richness (R)		Total number of species		Negative	Higher R outside protected areas due to higher diversity of lower trophic level species	$23.0(\pm 13.4)$	1-54	Boulanger et al. (2021) and Loiseau et al. (2021)
Functional diversity (FD)	FishMed	Number of functional groups. Fish functional groups were created using species traits and the application of 'clustering by fast search and find of density peaks' algorithm based on the Gower distance between species pairs (Mouillot et al., 2021)		None or positive	Human impacts affect species sharing similar traits. Reserves could restore functional space	8.45 ($\pm 3.3)$	1-16	Cinner et al. (2020) and D'agata et al. (2014)
Phylogenetic diversity (PD)	Fish Tree of Life (Rabosky et al., 2018)	Sum of the total phylogenetic branch length for teleost species in a sample (Faith, 1992)	fishtree 0.3.4 (Chang et al., 2019) pd function in picante 1.8.2 (Kembel et al., 2010)	None or positive	PD can capture unmeasured functional diversity	11.1 ($\pm 4.8)$	1.5-21.8	D'agata et al. (2014)
Large fish index (LFI)	FishMed	Number of species with an average body length $>20 \mathrm{~cm}$ (www.reeflifesurvey. com/indicators/)		None or positive	Exploitation targets large fishes. But reserve effect is expected on abundance and biomass rather than large species richness	$16.9(\pm 9.3)$	0-40	Cinner et al. (2018) and Juhel et al. (2018)
Crypto-benthic richness (Crypto)	FishMed	Benthic families having $>10 \%$ of species with average adult size $<5 \mathrm{~cm}$ (listed in Brandl et al., 2018)		Negative	Higher diversity of small sized species due to reduced predation outside reserve	$5.9(\pm 3.6)$	0-13	Boulanger et al. (2021) and Brandl et al. (2018)
Ratio dermopelagic/benthic species (DeBRa)	FishMed	Number of demersal and pelagic species/ (Number of benthic species+1)		Positive		$0.84(\pm 0.6)$	0-6	
IUCN Red List species richness (RedList)	Red List of Threatened Species (IUCN, 2021)	Weighted sum of Red Listed species with weights $\mathrm{VU}=1, \mathrm{EN}=2, \mathrm{CR}=3$	rredlist 0.7.0 (Chamberlain \& Salmon, 2020)	Positive	Reserves offer protection to vulnerable species	$0.86(\pm 1.4)$	0-7	Loiseau et al. (2021)
Chondrichtyen species richness (Chondri)		Number of shark and ray species		None	Chondrichtyen species are highly mobile and unlikely to stay inside reserves	$0.49(\pm 0.9)$	0-4	Dwyer et al. (2020)
Vulnerability (Vulner)	FishBase	Mean of all species sensitivity to exploitation calculated from 8 lifehistory traits	rfishbase 3.1.9 (Boettiger et al., 2012)	Positive	Sensitive species are expected to respond more strongly to protection	$44.8(\pm 6.1)$	10.0-69.1	Cheung et al. (2005)
Commercial species richness (Commercial)	FishMed	Number of species with a commercial interest		None or positive	Commercial species are likely present inside and outside reserves, hence protection is expected to affect	$15.8(\pm 8.7)$	0-36	Giakoumi et al. (2017) and Yan et al. (2021)
Highly commercial species richness (Highl_commerc)	FishMed	Number of species of high commercial value (targeted by commercial fisheries)		None or positive	their biomass and abundance but not necessarily the number of commercial species	$4.4(\pm 2.6)$	0-11	

(FD, PD, LFI, Crypto, RedList, Chondri, Commercial and High_commerc) were expressed as a proportion of the total species richness in the sample to avoid redundant information.

We then used generalized linear models (GLMs) to test the effect of protection on each of the 11 indicators while accounting for habitat and environmental heterogeneity between sites. Distribution of the indicators was checked using histograms (Figure S1). Accordingly, we modelled the proportion of Red-Listed species and the proportion of chondrichthyans using a quasi-Poisson distribution, best suited for zero-inflated distributions, whereas all other indicators were modelled using a Gaussian distribution.

We used a total of nine variables to account for habitat and environmental variability between samples (see Appendix S1 and Table S1). We performed a principal component analysis (Figures S2S4) on the eight habitat and environmental variables to reduce the dimensionality of the dataset and build models with independent variables. We used the first four principal components which explained 80% of the variance between samples (Figure S2) as explanatory variables in our GLMs. To account for spatial autocorrelation due to potentially overlooked factors, we estimated a spatial autocovariate on each initial GLM residuals, using the function autocov_dist of package sPDEP (Bivand \& Wong, 2018), and included it as an additional predictor in the final models.

We calculated the R^{2} for each model to determine their accuracy, and we estimated 'partial effects' of the protection variable (i.e. its contribution conditional to habitat and environmental variables)
using the margin function of the R package MARGINS version 0.3.26 (Leeper, 2021). The conditional predicted values of the indicators inside vs. outside reserves and the test of marginal effects are given in Figure 2.

Finally, we tested spatial autocorrelation in the residuals of our models using a Moran's I test. To test the potential effect of the unbalanced sampling (more samples outside than inside reserves), we randomly selected four samples outside reserve for each region and ran the same analyses. We tested the effect of reserve age and size by replicating the analyses while replacing the 'protection' explanatory variable with age and size, and only considering the samples taken inside the reserves (31 samples).

3 | RESULTS

3.1 | Detected sequences and fish species

We recovered a total of $53,765,575$ sequences after bioinformatic filtering, with an average of 548,628 sequences per eDNA sample ($\min =1178$; $\max =1178,732 ; S D=274,660$). After taxonomic assignment, a total of 113 fish species covering 84 genera and 46 families were identified (Table S4), with an average taxonomic richness of $23(\pm 13)$ species per sample (Table 1). The most represented families were Gobiidae (15 species) and Labridae (14 species), whereas 28 families were represented by a single species.

FIGURE 2 Results of the generalized linear models (GLMs) testing the effect of protection on the biodiversity indicators while accounting for habitat and environmental heterogeneity but also spatial autocorrelation. Boxplots represent the conditional predicted values of the indicators inside vs. outside reserves, with the test of marginal effects (ME p-values). Only the indicators showing a significant strong to moderate response (Muff et al., 2021) to protection are represented (four indicators). The other seven indicators are presented in Figure S6.

The most frequent species were the damselfish (Chromis chromis; detected in 95% of samples), the saddled seabream (Oblada melanura; 89\% of samples) and the bogue (Boops boops; 86\% of samples), whereas some rare species such as the grey triggerfish (Balistes capriscus), the velvet belly lanternshark (Etmopterus spinax) or the short-snouted seahorse (Hippocampus hippocampus) were detected in only one sample.

Nine species were exclusively detected inside a reserve while 27 species were exclusively recorded outside (Figure S5, Table S4). Among the 27 species exclusively found in fished sites, 26% (7 species) were cryptobenthic fishes. In contrast, pelagic species represented 44\% (4 species) of the species identified only inside reserves.

Two elusive shark species were detected outside reserves: the smooth-hound shark Mustelus mustelus and the velvet belly lanternshark Etmopterus spinax, classified, respectively, 'Endangered' and 'Vulnerable' on the IUCN Red List of Threatened Species. The 'Critically Endangered' eagle ray Myliobatis aquila and the 'Vulnerable' brown stingray Bathytoshia lata were also only detected outside reserves (Figure S5, Table S4).

3.2 | Effect of protection on biodiversity indicators

The mean, minimal and maximal values of each biodiversity indicator across all samples are provided in Table 1. The adjusted R^{2} of the finals models ranged from 0.07 (LFI) to 0.40 (PD) with an average of 0.25 . Our results showed a significant positive effect of protection on only three out of 11 biodiversity indicators after accounting for habitat and environmental variables but also
spatial autocorrelation (Figure 2): functional diversity FD (i.e. the proportion of different functional groups within a sample), phylogenetic diversity PD and the ratio of demerso-pelagic on benthic species richness. Our models revealed a significant 15% increase in FD and 9\% increase in PD inside reserves compared to outside (Figure 3, Table S5). The DeBRa ratio increased by 7\% with protection (Figure 3, Table S5), hence indicating a larger proportion of demersal and pelagic species inside reserves, and a relatively larger proportion of benthic species in fished areas. On the other hand, total species richness significantly decreased from an average of $30(\pm 11)$ species per sample in fished areas to $23(\pm 11)$ species inside marine reserves (Figure 2). We did not detect any significant effect of protection on the other seven biodiversity indicators (Figures S3-S6).

Across all final models, we did not detect any significant spatial autocorrelation in the residuals with Moran's I ranging from 0.00 to 0.27 and p-value ranging from 0.05 to 0.88 (Figure S7). The results obtained with the balanced dataset (i.e. with the same number of samples inside and outside reserves) were similar to the results found using the full dataset. We did not find any significant effect of reserve size or age on any of the indicator (Figures S8 and S9), except on the Crypto indicator for which reserve age had a slightly positive effect (average marginal effect $M E=0.004$; p-value $=0.018$).

4 | DISCUSSION

Here, we used eDNA surveys in nine marine reserves of the northwestern Mediterranean Sea to assess the effect of protection on

FIGURE 3 Partial effect of protection on biodiversity indicators from generalized linear models (GLMs). The coefficient (\pm confidence intervals at 95% level) is the average marginal effect (AEM) of protection on each indicator, indicating its partial effect while accounting for the effect of other covariates (i.e. principal component analysis [PCA] axes and spatial autocorrelation). The colour gradient represents the strength of the evidence (p-value from the marginal effect test), following Muff et al. (2021).
various components of fish biodiversity including their traits, evolutionary history, commercial importance and vulnerability to exploitation, while controlling for habitat and environmental heterogeneity but also spatial autocorrelation. We show that only 3 out of 11 biodiversity indicators respond positively and significantly to protection. We also confirm our initial hypothesis and recent findings (Boulanger et al., 2021; Loiseau et al., 2021) that fish species richness can be higher outside than inside marine reserves, this pattern being driven by the diversity of cryptobenthic fishes notoriously missed by classical assessments (Brandl et al., 2018). Because of their high diversity, high fecundity and rapid turnover, we can assume that cryptobenthic communities can re-shuffle more rapidly than their demersal and pelagic counterparts in response to predation and human pressure. In other words, cryptobenthic fishes could be considered as 'pioneer-species' in coastal ecosystems, that is, hardy species establishing themselves in a disturbed ecosystem and triggering ecological succession (Swaine \& Whitmore, 1988).

Our results reiterate that species richness cannot provide a relevant conservation target, as community composition differs among levels of protection. The diversity of large mobile species, such as sharks and rays, is unaffected by protection. This rather concerning result may be explained by the small size and shallow depth of no-take Mediterranean reserves, in our case between $0.65 \mathrm{~km}^{2}$ (Cerbère-Banyuls) and $10.74 \mathrm{~km}^{2}$ (Calvi), compared to the home range of most predator or elasmobranch species (Dwyer et al., 2020; Juhel et al., 2018). This relatively limited area covered by our marine reserves may also explain why reserve size has no effect on most our biodiversity indicators.

We observed a higher functional and phylogenic diversity within reserves (Figures 2 and 3), which corroborates the findings of other studies using other assessment methods (Sanabria-Fernandez et al., 2019; Villamor \& Becerro, 2012). Our findings confirm that eDNA offers a powerful tool to capture the breadth of functional and phylogenetic composition, since the method can detect rare, elusive and highly mobile taxa likely to exhibit distinct traits and lineages (Aglieri et al., 2021; Marques et al., 2021). The higher functional and phylogenetic diversity may, in turn, translate into wider functional roles played by fishes under protection, likely offering benefits for ecosystem functioning such as resilience or productivity (Tredennick et al., 2017).

We also found a higher, albeit not significantly, diversity of exploited fishes and species of high commercial value (i.e. targeted by industrial and small-scale fisheries) within reserves (Figures S3-S6). The biomass and abundance of commercial taxa are known to be higher inside than outside MPAs since they are particularly sensitive to fishing pressure and logically respond stronger and quicker to protection (Blowes et al., 2020; Giakoumi et al., 2017; Loiseau et al., 2021). However, since our eDNA-based commercial indicators are non-quantitative (i.e. based on species occurrences), they are not expected to display much variation between protection statuses. The Commercial indicator would be higher inside MPAs if some commercial species were completely extirpated from fished
areas, which is extremely unlikely, or if their higher abundance within MPAs increased their detectability due to increased eDNA shedding, which is more likely. Last, and contrary to expectations, we did not detect any reserve effect on the 'sensitivity to fishing' (i.e. vulnerability) indicator or on the Large Fish Indicator. This rather puzzling result may indicate that protection acts on the biomass and density of sensitive species (Cinner et al., 2018; Juhel et al., 2018), but that residual populations or early life stages, often undetectable by classical surveys, may still occur in fished areas. As an alternative hypothesis, species sensitive to fishing may take refugia in deeper areas (Frank et al., 2018), like mesophotic reefs, hence could not be detected by our coastal surface sampling in both marine reserves and fished areas.

We highlight the importance of looking beyond the number of species to fully depict and better understand reserve effect on biodiversity. From a monitoring perspective, assessing taxonomic or even vulnerable species richness is not enough and can be irrelevant to evaluate the status of ecosystems or the effectiveness of conservation measures. Rather, we propose a set of three eDNAbased indicators, independent of species richness, that can provide early signals of ecosystem deterioration or recovery (Figure 4). Soykan and Lewison (2015) proposed a set of community-level metrics to monitor the effect of MPAs on biodiversity and found that biomass-based metrics responded more consistently to protection than abundance-based metrics. Since eDNA does not yet allow accurate biomass quantification in the Mediterranean system (Sanchez et al., 2022), other occurrence-based indicators were to be found. We suggest that the monitoring of MPAs and fisheries may rely on complementary monitoring techniques, including eDNA, like underwater visual censuses (UVCs), baited remote underwater videos (BRUVs) or bioacoustics (Marques et al., 2021; Sigsgaard et al., 2020; Valdivia-Carrillo et al., 2021) able to provide complementary indicators (size-based, abundance-based or occurrence-based). Each of these methods has its pros and cons, hence developing ecological indicators incorporating various sources of information might be the best way to fully depict the complexity of ecological communities. For example, Aglieri et al. (2021) compared four monitoring methods (visual census, underwater video, fishery catches and eDNA) and showed that eDNA is the best suited to capture the functional diversity of coastal fish communities, due to its lack of selectivity towards a specific trait. More generally, eDNA offers reliable and broad species inventories detecting small, cryptic, nocturnal, rare and elusive species that are often missed or not-targeted by conventional methods (Gold et al., 2021; McElroy et al., 2020; Miya, 2022). On the other hand, UVCs or BRUVs are compulsory to assess the abundance and size distribution of focal taxa, such as commercial species or conservation targets. Hence, we advocate the use eDNA metabarcoding to complement other survey techniques, to expand monitoring activities across space (e.g. deep sea or areas where diving is unsafe) and time (e.g. increased monitoring frequency) to improve the overall biodiversity assessment.

As any monitoring tool, eDNA-based inventories necessarily involve limitations including false positives and false negatives,

Fish biodiversity	Indicator	Protection effect
Fishecies richness		

FIGURE 4 Summary of the response of biodiversity indicators to reserve effect based on generalized linear models (GLMs) while accounting for habitat and environmental heterogeneity but also spatial autocorrelation. Green arrows pointing up indicate a significant positive effect (e.g. more functional fish diversity inside reserves than outside). The red transparent arrow pointing down indicates a significant negative effect. The blue, horizontal arrows indicate equal indicator values inside and outside reserves. Icons were drawn by Arthur Escalas or downloaded from clipart-library.com.
resulting from differences in eDNA shedding and PCR amplification among taxa (Kelly et al., 2019), and heterogenous decay among systems and taxa that may affect species detectability. These limitations need to be recognized when interpreting eDNA metabarcoding results, and should be overcome by future research and technical developments (Miya, 2022). For instance, knowing the hydro-geomorphological features of a river network allowed the reconstruction of upstream distribution and abundance of freshwater species using eDNA (Carraro et al., 2018). More recently, Cantera et al. (2022) used eDNA and measurements of anthropic disturbance to show the spatial extend of deforestation impact on vertebrate biodiversity in Amazonia. Such assessments remain challenging in the marine ecosystem, but accounting for seascape connectivity may contribute to identify source-sink dynamics in eDNA passive drift, and better predict biodiversity patterns including species abundances.

Associated with relevant biodiversity indicators, eDNA metabarcoding offers a powerful non-invasive and cost-effective tool
for long-term biodiversity monitoring by providing standardized assessments in space and time that do not rely on taxonomic expertise. As we enter the United Nations Decade of Ocean Science for Sustainable Development and the Post-2020 Biodiversity Framework, collecting such knowledge is crucial to fully depict biological communities and to evaluate the progresses made towards international conservation targets.

AUTHOR CONTRIBUTIONS

Alicia Dalongeville and David Mouillot designed the study. Emilie Boulanger, Julie Deter, Philippe Lenfant, Franck Pichot, Loic Sanchez, Florian Holon, Eric Charbonnel, Virginie Hartmann and Lola Romant conducted the fieldwork. Alice Valentini, Tristan Milhau, Stéphanie Manel, Veronique Arnal and Tony Dejean supervised the biomolecular analyses and Virginie Marques performed the bioinformatic analyses. Julie Deter, Florian Holon, Laure Velez, Thomas Bockel and Gwenaelle Delaruelle collected the environmental data. Alicia Dalongeville, Emilie Boulanger and Lola Romant performed the
statistical analyses. Alicia Dalongeville wrote the first draft of the paper. Emilie Boulanger, Virginie Marques, Eric Charbonnel, Virginie Hartmann, Marie Catherine Santoni, Julie Deter, Alice Valentini, Philippe Lenfant, Pierre Boissery, Tony Dejean, Laure Velez, Stéphanie Manel and David Mouillot interpreted the results and corrected the paper. All authors approved the final version of the manuscript.

ACKNOWLEDGEMENTS

Funding was provided by the Region Occitanie, the Agence de l'Eau RMC and the Office de l'Environnement de la Corse to perform sampling and metabacoding. Analyses were supported by the ANR LabCom DiagADNe (ANR-20-LCV1-0008). The authors thank all staff and students involved in the field and laboratory work, in particular Nacim Gellali, Jean-Baptiste Juhel, Nadia Faure and SPYGEN staff. We also thank Frédéric Bachet, Olivier Bretton, from the Parc Marin de la Côte Bleue, Frédéric Cadène, from the Reserve Marine de CerbèreBanyuls, and Jean Michel Culioli from the Office de I'Environnement de la Corse, for logistical support and expertise during sample collection.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

The bioinformatic pipeline is freely available in Gitlab at the following link: https://gitlab.mbb.univ-montp2.fr/edna/snakemake_rapid run_obitools. All data and code are available in a GitHub repository at the following link: https://github.com/AliciaDalongeville/eDNA indicators_med.git.

ORCID

Alicia Dalongeville (D) https://orcid.org/0000-0002-8969-8243 Emilie Boulanger (D) https://orcid.org/0000-0002-6446-7342 Virginie Marques (D) https://orcid.org/0000-0002-5142-4191 Eric Charbonnel (ID https://orcid.org/0000-0003-1440-5626 Alice Valentini (D) https://orcid.org/0000-0001-5829-5479 Pierre Boissery (D) https://orcid.org/0000-0003-3849-9487 Tony Dejean (1) https://orcid.org/0000-0002-5115-4902 Loic Sanchez (D) https://orcid.org/0000-0002-3795-2641 Veronique Arnal (i) https://orcid.org/0000-0002-4037-490X Florian Holon (ID https://orcid.org/0000-0003-1713-3400 Tristan Milhau (D) https://orcid.org/0000-0003-0120-1384 Stéphanie Manel (D) https://orcid.org/0000-0001-8902-6052 David Mouillot (D) https://orcid.org/0000-0003-0402-2605

REFERENCES

Aglieri, G., Baillie, C., Mariani, S., Cattano, C., Calò, A., Turco, G., Spatafora, D., Di Franco, A., Di Lorenzo, M., Guidetti, P., \& Milazzo, M. (2021). Environmental DNA effectively captures functional diversity of coastal fish communities. Molecular Ecology, 30(13), 3127-3139. https://doi.org/10.1111/mec. 15661
Albouy, C., Ben Rais Lasram, F., Velez, L., Guilhaumon, F., Meynard, C. M., Boyer, S., Benestan, L., Mouquet, N., Douzery, E. J. P., Aznard, R., Troussellier, M., Somot, S., Leprieur, F., Le Loch, F., \& Mouillot, D. (2015). FishMed: Traits, phylogeny, current and projected species
distribution of Mediterranean fishes and environmental data. Ecology, 96(8), 2312-2313.
Bivand, R. S., \& Wong, D. W. S. (2018). Comparing implementations of global and local indicators of spatial association. TEST, 27(3), 716748. https://doi.org/10.1007/s11749-018-0599-x

Blowes, S. A., Chase, J. M., Franco, A. D., Frid, O., Gotelli, N. J., Guidetti, P., Knight, T. M., May, F., McGlinn, D. J., Micheli, F., Sala, E., \& Belmaker, J. (2020). Mediterranean marine protected areas have higher biodiversity via increased evenness, not abundance. Journal of Applied Ecology, 57(3), 578-589. https://doi.org/10.1111/1365-2664.13549
Boettiger, C., Lang, D. T., \& Wainwright, P. C. (2012). Rfishbase: Exploring, manipulating and visualizing FishBase data from R. Journal of Fish Biology, 81(6), 2030-2039. https://doi.org/10.1111/j. 1095-8649.2012.03464.x
Boulanger, E., Loiseau, N., Valentini, A., Arnal, V., Boissery, P., Dejean, T., Deter, J., Guellati, N., Holon, F., Juhel, J.-B., Lenfant, P., Manel, S., \& Mouillot, D. (2021). Environmental DNA metabarcoding reveals and unpacks a biodiversity conservation paradox in Mediterranean marine reserves. Proceedings of the Royal Society B: Biological Sciences, 288(1949), rspb.2021.0112, 20210112. https://doi.org/10.1098/ rspb.2021.0112
Boussarie, G., Bakker, J., Wangensteen, O. S., Mariani, S., Bonnin, L., Juhel, J.-B., Kiszka, J. J., Kulbicki, M., Manel, S., Robbins, W. D., Vigliola, L., \& Mouillot, D. (2018). Environmental DNA illuminates the dark diversity of sharks. Science Advances, 4(5), eaap9661. https://doi.org/10.1126/sciadv.aap9661
Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P., \& Coissac, E. (2016). Obitools: A unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources, 16(1), 176-182. https:// doi.org/10.1111/1755-0998.12428
Brandl, S. J., Goatley, C. H. R., Bellwood, D. R., \& Tornabene, L. (2018). The hidden half: Ecology and evolution of cryptobenthic fishes on coral reefs. Biological Reviews, 93(4), 1846-1873. https://doi. org/10.1111/brv. 12423
Cantera, I., Coutant, O., Jézéquel, C., Decotte, J.-B., Dejean, T., Iribar, A., Vigouroux, R., Valentini, A., Murienne, J., \& Brosse, S. (2022). Low level of anthropization linked to harsh vertebrate biodiversity declines in Amazonia. Nature Communications, 13(1), 3290. https:// doi.org/10.1038/s41467-022-30842-2
Carraro, L., Hartikainen, H., Jokela, J., Bertuzzo, E., \& Rinaldo, A. (2018). Estimating species distribution and abundance in river networks using environmental DNA. Proceedings of the National Academy of Sciences of the United States of America, 115(46), 11724-11729. https://doi.org/10.1073/pnas. 1813843115
Chamberlain, S., \& Salmon, M. (2020). Rredlist: "IUCN" red list client (0.7.0). Computer Software. https://CRAN.R-project.org/packa ge=rredlist
Chang, J., Rabosky, D. L., Smith, S. A., \& Alfaro, M. E. (2019). An r package and online resource for macroevolutionary studies using the ray-finned fish tree of life. Methods in Ecology and Evolution, 10(7), 1118-1124. https://doi.org/10.1111/2041-210X. 13182
Cheung, W. W. L., Pitcher, T. J., \& Pauly, D. (2005). A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes to fishing. Biological Conservation, 124(1), 97-111. https://doi. org/10.1016/j.biocon.2005.01.017
Cinner, J. E., Maire, E., Huchery, C., MacNeil, M. A., Graham, N. A. J., Mora, C., McClanahan, T. R., Barnes, M. L., Kittinger, J. N., Hicks, C. C., D'Agata, S., Hoey, A. S., Gurney, G. G., Feary, D. A., Williams, I. D., Kulbicki, M., Vigliola, L., Wantiez, L., Edgar, G. J., ... Mouillot, D. (2018). Gravity of human impacts mediates coral reef conservation gains. Proceedings of the National Academy of Sciences of the United States of America, 115(27), E6116-E6125. https://doi.org/10.1073/ pnas. 1708001115
Cinner, J. E., Zamborain-Mason, J., Gurney, G. G., Graham, N. A. J., MacNeil, M. A., Hoey, A. S., Mora, C., Villéger, S., Maire, E.,

McClanahan, T. R., Maina, J. M., Kittinger, J. N., Hicks, C. C., D'agata, S., Huchery, C., Barnes, M. L., Feary, D. A., Williams, I. D., Kulbicki, M., ... Mouillot, D. (2020). Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science, 368(6488), 307-311. https://doi.org/10.1126/science.aax9412
Claudet, J., Loiseau, C., Sostres, M., \& Zupan, M. (2020). Underprotected marine protected areas in a global biodiversity hotspot. One Earth, 2(4), 380-384. https://doi.org/10.1016/j.oneear.2020.03.008
Claudet, J., Osenberg, C. W., Domenici, P., Badalamenti, F., Milazzo, M. Falcón, J. M., Bertocci, I., Benedetti-Cecchi, L., García-Charton, J.A., Goñi, R., Borg, J. A., Forcada, A., de Lucia, G. A., Pérez-Ruzafa, Á., Afonso, P., Brito, A., Guala, I., Diréach, L. L., Sanchez-Jerez, P., ... Planes, S. (2010). Marine reserves: Fish life history and ecological traits matter. Ecological Applications, 20(3), 830-839. https://doi. org/10.1890/08-2131.1
Collins, R. A., Bakker, J., Wangensteen, O. S., Soto, A. Z., Corrigan, L., Sims, D. W., Genner, M. J., \& Mariani, S. (2019). Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods in Ecology and Evolution, 10(11), 1985-2001. https:// doi.org/10.1111/2041-210X. 13276
Costello, M. J., \& Ballantine, B. (2015). Biodiversity conservation should focus on no-take marine reserves: 94% of marine protected areas allow fishing. Trends in Ecology \& Evolution, 30(9), 507-509. https:// doi.org/10.1016/j.tree.2015.06.011
D'agata, S., Mouillot, D., Kulbicki, M., Andréfouët, S., Bellwood, D. R., Cinner, J. E., Cowman, P. F., Kronen, M., Pinca, S., \& Vigliola, L (2014). Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Current Biology, 24(5), 555-560. https://doi org/10.1016/j.cub.2014.01.049
Dornelas, M., Gotelli, N. J., Shimadzu, H., Moyes, F., Magurran, A. E., \& McGill, B. J. (2019). A balance of winners and losers in the Anthropocene Ecology Letters, 22(5), 847-854. https://doi.org/10.1111/ele. 13242
Dwyer, R. G., Krueck, N. C., Udyawer, V., Heupel, M. R., Chapman, D. Pratt, H. L., Garla, R., \& Simpfendorfer, C. A. (2020). Individual and population benefits of marine reserves for reef sharks. Current Biology, 30(3), 480-489.e5. https://doi.org/10.1016/j. cub.2019.12.005
Faith, D. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61(1), 1-10. https://doi. org/10.1016/0006-3207(92)91201-3
Frank, K. T., Petrie, B., Leggett, W. C., \& Boyce, D. G. (2018). Exploitation drives an ontogenetic-like deepening in marine fish. Proceedings of the National Academy of Sciences of the United States of America, 115(25), 6422-6427. https://doi.org/10.1073/pnas. 1802096115
Froese, R., \& Pauly, D. (2010). FishBase. World Wide Web Electronic Publication. www.fishbase.org
Giakoumi, S., Scianna, C., Plass-Johnson, J., Micheli, F., Grorud-Colvert, K., Thiriet, P., Claudet, J., Di Carlo, G., Di Franco, A., Gaines, S. D., García-Charton, J. A., Lubchenco, J., Reimer, J., Sala, E., \& Guidetti, P. (2017). Ecological effects of full and partial protection in the crowded Mediterranean Sea: A regional meta-analysis Scientific Reports, 7(1), 8940. https://doi.org/10.1038/s41598 017-08850-w
Gold, Z., Sprague, J., Kushner, D. J., Marin, E. Z., \& Barber, P. H. (2021) EDNA metabarcoding as a biomonitoring tool for marine protected areas. PLoS ONE, 16(2), e0238557. https://doi.org/10.1371/journ al.pone. 0238557
Grorud-Colvert, K., Sullivan-Stack, J., Roberts, C., Constant, V., Costa, B, H. e., Pike, E. P., Kingston, N., Laffoley, D., Sala, E., Claudet, J., Friedlander, A. M., Gill, D. A., Lester, S. E., Day, J. C., Gonçalves, E. J., Ahmadia, G. N., Rand, M., Villagomez, A., Ban, N. C., ... Lubchenco, J. (2021). The MPA guide: A framework to achieve global goals for the ocean. Science, 373(6560), eabf0861. https://doi.org/10.1126/ science.abf0861
IUCN. (2021). The IUCN red list of threatened species (version 2021-2) Computer Software. https://www.iucnredlist.org

Jensen, M. R., Sigsgaard, E. E., Ávila, M. d. P., Agersnap, S., BrennerLarsen, W., Sengupta, M. E., Xing, Y., Krag, M. A., Knudsen, S. W., Carl, H., Møller, P. R., \& Thomsen, P. F. (2022). Short-term temporal variation of coastal marine eDNA. Environmental DNA, 4, 747-762. https://doi.org/10.1002/edn3.285
Juhel, J.-B., Vigliola, L., Mouillot, D., Kulbicki, M., Letessier, T. B., Meeuwig, J. J., \& Wantiez, L. (2018). Reef accessibility impairs the protection of sharks. Journal of Applied Ecology, 55(2), 673-683. https://doi.org/10.1111/1365-2664.13007
Kelly, R. P., Shelton, A. O., \& Gallego, R. (2019). Understanding PCR processes to draw meaningful conclusions from environmental DNA studies. Scientific Reports, 9(1), 12133. https://doi.org/10.1038/ s41598-019-48546-x
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., \& Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics (Oxford, England), 26(11), 1463-1464. https://doi.org/10.1093/ bioinformatics/btq166
Leeper, T. J. (2021). Margins: Marginal effects for model objects (R package version 0.3.26) [R]. https://github.com/leeper/margins (Original work published 2014)
Loiseau, N., Thuiller, W., Stuart-Smith, R. D., Devictor, V., Edgar, G. J., Velez, L., Cinner, J. E., Graham, N. A. J., Renaud, J., Hoey, A. S., Manel, S., \& Mouillot, D. (2021). Maximizing regional biodiversity requires a mosaic of protection levels. PLoS Biology, 19(5), e3001195. https://doi.org/10.1371/journal.pbio. 3001195
Marcos, C., Díaz, D., Fietz, K., Forcada, A., Ford, A., García-Charton, J. A., Goñi, R., Lenfant, P., Mallol, S., Mouillot, D., Pérez-Marcos, M., Puebla, O., Manel, S., \& Pérez-Ruzafa, A. (2021). Reviewing the ecosystem services, societal goods, and benefits of marine protected areas. Frontiers in Marine Science, 8, 613819. https://www.frontiersin.org/article/10.3389/fmars.2021.613819
Marques, V., Castagné, P., Polanco Fernández, A., Borrero-Pérez, G. H., Hocdé, R., Guérin, P.-É., Juhel, J.-B., Velez, L., Loiseau, N., Letessier, T. B., Bessudo, S., Valentini, A., Dejean, T., Mouillot, D., Pellissier, L., \& Villéger, S. (2021). Use of environmental DNA in assessment of fish functional and phylogenetic diversity. Conservation Biology, 35(6), 1944-1956. https://doi.org/10.1111/cobi. 13802
McElroy, M. E., Dressler, T. L., Titcomb, G. C., Wilson, E. A., Deiner, K., Dudley, T. L., Eliason, E. J., Evans, N. T., Gaines, S. D., Lafferty, K. D., Lamberti, G. A., Li, Y., Lodge, D. M., Love, M. S., Mahon, A. R., Pfrender, M. E., Renshaw, M. A., Selkoe, K. A., \& Jerde, C. L. (2020). Calibrating environmental DNA metabarcoding to conventional surveys for measuring fish species richness. Frontiers in Ecology and Evolution, 8, 276. https://www.frontiersin.org/articles/10.3389/ fevo. 2020.00276
Micheli, F., Halpern, B. S., Walbridge, S., Ciriaco, S., Ferretti, F., Fraschetti, S., Lewison, R., Nykjaer, L., \& Rosenberg, A. A. (2013). Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: Assessing current pressures and opportunities. PLoS ONE, 8(12), e79889. https://doi.org/10.1371/journal.pone. 0079889
Miya, M. (2022). Environmental DNA metabarcoding: A novel method for biodiversity monitoring of marine fish communities. Annual Review of Marine Science, 14(1), 161-185. https://doi.org/10.1146/ annurev-marine-041421-082251
Mouillot, D., Loiseau, N., Grenié, M., Algar, A. C., Allegra, M., Cadotte, M. W., Casajus, N., Denelle, P., Guéguen, M., Maire, A., Maitner, B., McGill, B. J., McLean, M., Mouquet, N., Munoz, F., Thuiller, W., Villéger, S., Violle, C., \& Auber, A. (2021). The dimensionality and structure of species trait spaces. Ecology Letters, 24(9), 1988-2009. https://doi.org/10.1111/ele. 13778
Muff, S., Nilsen, E. B., O'Hara, R. B., \& Nater, C. R. (2021). Rewriting results sections in the language of evidence. Trends in Ecology \& Evolution, 37(3), 203-210. https://doi.org/10.1016/j.tree.2021.10.009
Polanco Fernández, A., Richards, E., Flück, B., Valentini, A., Altermatt, F., Brosse, S., Walser, J.-C., Eme, D., Marques, V., Manel, S., Albouy,
C., Dejean, T., \& Pellissier, L. (2021). Comparing the performance of 12 S mitochondrial primers for fish environmental DNA across ecosystems. Environmental DNA, 3(6), 1113-1127. https://doi. org/10.1002/edn3.232
Rabosky, D. L., Chang, J., Title, P. O., Cowman, P. F., Sallan, L., Friedman, M., Kaschner, K., Garilao, C., Near, T. J., Coll, M., \& Alfaro, M. E. (2018). An inverse latitudinal gradient in speciation rate for marine fishes. Nature, 559(7714), 392-395. https://doi.org/10.1038/s4158 6-018-0273-1
Sanabria-Fernandez, J. A., Alday, J. G., Lazzari, N., Riera, R., \& Becerro, M. A. (2019). Marine protected areas are more effective but less reliable in protecting fish biomass than fish diversity. Marine Pollution Bulletin, 143, 24-32. https://doi.org/10.1016/j.marpo Ibul.2019.04.015
Sanchez, L., Boulanger, E., Arnal, V., Boissery, P., Dalongeville, A., Dejean, T., Deter, J., Guellati, N., Holon, F., Juhel, J.-B., Lenfant, P., Leprieur, F., Valentini, A., Manel, S., \& Mouillot, D. (2022). Ecological indicators based on quantitative eDNA metabarcoding: The case of marine reserves. Ecological Indicators, 140, 108966. https://doi. org/10.1016/j.ecolind.2022.108966
Sigsgaard, E. E., Torquato, F., Frøslev, T. G., Moore, A. B. M., Sørensen, J. M., Range, P., Ben-Hamadou, R., Bach, S. S., Møller, P. R., \& Thomsen, P. F. (2020). Using vertebrate environmental DNA from seawater in biomonitoring of marine habitats. Conservation Biology, 34(3), 697-710. https://doi.org/10.1111/cobi. 13437
Smit, K. P., Bernard, A. T. F., Lombard, A. T., \& Sink, K. J. (2021). Assessing marine ecosystem condition: A review to support indicator choice and framework development. Ecological Indicators, 121, 107148. https://doi.org/10.1016/j.ecolind.2020.107148
Soykan, C. U., \& Lewison, R. L. (2015). Using community-level metrics to monitor the effects of marine protected areas on biodiversity. Conservation Biology, 29(3), 775-783. https://doi.org/10.1111/ cobi. 12445
Swaine, M. D., \& Whitmore, T. C. (1988). On the definition of ecological species groups in tropical rain forests. Vegetatio, 75(1), 81-86. https://doi.org/10.1007/BF00044629
Tredennick, A. T., Adler, P. B., \& Adler, F. R. (2017). The relationship between species richness and ecosystem variability is shaped by the mechanism of coexistence. Ecology Letters, 20(8), 958-968. https:// doi.org/10.1111/ele. 12793
Turnbull, J. W., Johnston, E. L., \& Clark, G. F. (2021). Evaluating the social and ecological effectiveness of partially protected marine areas. Conservation Biology, 35(3), 921-932. https://doi.org/10.1111/ cobi. 13677
Valdivia-Carrillo, T., Rocha-Olivares, A., Reyes-Bonilla, H., DomínguezContreras, J. F., \& Munguia-Vega, A. (2021). Integrating eDNA metabarcoding and simultaneous underwater visual surveys to describe complex fish communities in a marine biodiversity hotspot. Molecular Ecology Resources, 21(5), 1558-1574. https://doi. org/10.1111/1755-0998.13375
Valentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J., Thomsen, P. F., Bellemain, E., Besnard, A., Coissac, E., Boyer, F., Gaboriaud, C., Jean,
P., Poulet, N., Roset, N., Copp, G. H., Geniez, P., Pont, D., Argillier, C., Baudoin, J.-M., ... Dejean, T. (2016). Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Molecular Ecology, 25(4), 929-942. https://doi.org/10.1111/ mec. 13428
Villamor, A., \& Becerro, M. A. (2012). Species, trophic, and functional diversity in marine protected and non-protected areas. Journal of Sea Research, 73, 109-116. https://doi.org/10.1016/j. seares.2012.07.002
Waterhouse, L., Heppell, S. A., Pattengill-Semmens, C. V., McCoy, C., Bush, P., Johnson, B. C., \& Semmens, B. X. (2020). Recovery of critically endangered Nassau grouper (Epinephelus striatus) in the Cayman Islands following targeted conservation actions. Proceedings of the National Academy of Sciences of the United States of America, 117(3), 1587-1595. https://doi.org/10.1073/pnas. 19171 32117
Yan, H. F., Kyne, P. M., Jabado, R. W., Leeney, R. H., Davidson, L. N. K., Derrick, D. H., Finucci, B., Freckleton, R. P., Fordham, S. V., \& Dulvy, N. K. (2021). Overfishing and habitat loss drive range contraction of iconic marine fishes to near extinction. Science Advances, 7(7), eabb6026. https://doi.org/10.1126/sciadv.abb6026
Zhang, S., Zhao, J., \& Yao, M. (2020). A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods in Ecology and Evolution, 11(12), 1609-1625. https://doi. org/10.1111/2041-210X. 13485
Zupan, M., Fragkopoulou, E., Claudet, J., Erzini, K., Horta e Costa, B., \& Gonçalves, E. J. (2018). Marine partially protected areas: Drivers of ecological effectiveness. Frontiers in Ecology and the Environment, 16(7), 381-387. https://doi.org/10.1002/fee. 1934

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Dalongeville, A., Boulanger, E., Marques, V., Charbonnel, E., Hartmann, V., Santoni, M. C., Deter, J., Valentini, A., Lenfant, P., Boissery, P., Dejean, T., Velez, L., Pichot, F., Sanchez, L., Arnal, V., Bockel, T., Delaruelle, G., Holon, F., Milhau, T. ... Mouillot, D. (2022). Benchmarking eleven biodiversity indicators based on environmental DNA surveys: More diverse functional traits and evolutionary lineages inside marine reserves. Journal of Applied Ecology, 59, 2803-2813. https://doi.org/10.1111/1365-2664.14276

[^0]: This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
 © 2022 The Authors. Journal of Applied Ecology published by John Wiley \& Sons Ltd on behalf of British Ecological Society.

